Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.425
Filter
1.
PLoS One ; 19(4): e0300539, 2024.
Article in English | MEDLINE | ID: mdl-38574058

ABSTRACT

Genetic and pharmacological perturbation of the cytoskeleton enhances the regenerative potential of neurons. This response requires Dual-leucine Zipper Kinase (DLK), a neuronal stress sensor that is a central regulator of axon regeneration and degeneration. The damage and repair aspects of this response are reminiscent of other cellular homeostatic systems, suggesting that a cytoskeletal homeostatic response exists. In this study, we propose a framework for understanding DLK mediated neuronal cytoskeletal homeostasis. We demonstrate that low dose nocodazole treatment activates DLK signaling. Activation of DLK signaling results in a DLK-dependent transcriptional signature, which we identify through RNA-seq. This signature includes genes likely to attenuate DLK signaling while simultaneously inducing actin regulating genes. We identify alterations to the cytoskeleton including actin-based morphological changes to the axon. These results are consistent with the model that cytoskeletal disruption in the neuron induces a DLK-dependent homeostatic mechanism, which we term the Cytoskeletal Stress Response (CSR) pathway.


Subject(s)
Actins , Axons , Axons/metabolism , Nocodazole/pharmacology , Actins/metabolism , Leucine Zippers , Nerve Regeneration/physiology , Cytoskeleton/metabolism , Homeostasis , MAP Kinase Kinase Kinases/genetics
2.
Cell Mol Life Sci ; 81(1): 119, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38456949

ABSTRACT

Activated small ubiquitin-like modifiers (SUMOs) have been implicated in neuropathological processes following ischemic stroke. However, the target proteins of SUMOylation and their contribution to neuronal injury remain to be elucidated. MLK3 (mixed-lineage kinase 3), a member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family, is a critical regulator of neuronal lesions following cerebral ischemia. Here, we found that SUMOylation of MLK3 increases in both global and focal ischemic rodent models and primary neuronal models of oxygen and glucose deprivation (OGD). SUMO1 conjugation at the Lys401 site of MLK3 promoted its activation, stimulated its downstream p38/c-Jun N-terminal kinase (JNK) cascades, and led to cell apoptosis. The interaction of MLK3 with PIAS3, a SUMO ligase, was elevated following ischemia and reperfusion. The PINIT domain of PIAS3 was involved in direct interactions with MLK3. Overexpression of the PINIT domain of PIAS3 disrupted the MLK3-PIAS3 interaction, inhibited SUMOylation of MLK3, suppressed downstream signaling, and reduced cell apoptosis and neurite damage. In rodent ischemic models, the overexpression of the PINIT domain reduced brain lesions and alleviated deficits in learning, memory, and sensorimotor functions. Our findings demonstrate that brain ischemia-induced MLK3 SUMOylation by PIAS3 is a potential target against poststroke neuronal lesions and behavioral impairments.


Subject(s)
Brain Ischemia , Sumoylation , Humans , MAP Kinase Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinase Kinase 11 , Signal Transduction/physiology , Brain Ischemia/metabolism , Cognition , Molecular Chaperones/metabolism , Protein Inhibitors of Activated STAT/genetics , Protein Inhibitors of Activated STAT/metabolism
3.
Hum Genet ; 143(3): 279-291, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38451290

ABSTRACT

Biallelic pathogenic variants in MAP3K20, which encodes a mitogen-activated protein kinase, are a rare cause of split-hand foot malformation (SHFM), hearing loss, and nail abnormalities or congenital myopathy. However, heterozygous variants in this gene have not been definitively associated with a phenotype. Here, we describe the phenotypic spectrum associated with heterozygous de novo variants in the linker region between the kinase domain and leucine zipper domain of MAP3K20. We report five individuals with diverse clinical features, including craniosynostosis, limb anomalies, sensorineural hearing loss, and ectodermal dysplasia-like phenotypes who have heterozygous de novo variants in this specific region of the gene. These individuals exhibit both shared and unique clinical manifestations, highlighting the complexity and variability of the disorder. We propose that the involvement of MAP3K20 in endothelial-mesenchymal transition provides a plausible etiology of these features. Together, these findings characterize a disorder that both expands the phenotypic spectrum associated with MAP3K20 and highlights the need for further studies on its role in early human development.


Subject(s)
Craniosynostoses , Ectodermal Dysplasia , Hearing Loss, Sensorineural , Heterozygote , Humans , Ectodermal Dysplasia/genetics , Ectodermal Dysplasia/pathology , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/pathology , Male , Female , Craniosynostoses/genetics , Phenotype , Child, Preschool , Limb Deformities, Congenital/genetics , Child , Mutation , Infant , MAP Kinase Kinase Kinases/genetics
4.
Am J Surg Pathol ; 48(4): 437-446, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38233731

ABSTRACT

Previous studies regarding the clinical behavior of Spitz neoplasms lack genomic characterization. We aim to assess our hypothesis that most MAP3K8 Spitz neoplasms are indolent despite MAP3K8 being the single most common driver of Spitz melanoma. Further, we aim to identify genomic features associated with aggressive behavior and to better characterize the morphology of these cases. We analyzed the outcomes of MAP3K8 Spitz neoplasms. We also performed a meta-analysis of the outcomes of MAP3K8 Spitz from the literature. Morphologic features were compared with other variants of Spitz using a Student t test and χ 2 test. Two of 35 cases resulted in local recurrence and one of these cases had local regional metastasis; all other cases had no evidence of recurrence (mean follow-up time: 33 mo). MAP3K8 Spitz only rarely results in aggressive behavior. Metastatic cases have genomic mutations associated with tumor progression. Morphologically, MAP3K8 Spitz neoplasms frequently showed nodular silhouette, large cell size, epithelioid morphology, and severe nuclear atypia resulting in more frequent diagnosis as Spitz melanoma. Most MAP3K8 Spitz neoplasms have excellent prognoses, apart from rare cases harboring additional genomic abnormalities associated with tumor progression.


Subject(s)
Melanoma , Nevus, Epithelioid and Spindle Cell , Skin Neoplasms , Humans , Melanoma/pathology , Retrospective Studies , Nevus, Epithelioid and Spindle Cell/genetics , Skin Neoplasms/pathology , Mutation , Proto-Oncogene Proteins/genetics , MAP Kinase Kinase Kinases/genetics
5.
Mol Cell ; 84(1): 142-155, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38118452

ABSTRACT

Cellular homeostasis is continuously challenged by environmental cues and cellular stress conditions. In their defense, cells need to mount appropriate stress responses that, dependent on the cellular context, signaling intensity, and duration, may have diverse outcomes. The stress- and mitogen-activated protein kinase (SAPK/MAPK) system consists of well-characterized signaling cascades that sense and transduce an array of different stress stimuli into biological responses. However, the physical and chemical nature of stress signals and how these are sensed by individual upstream MAP kinase kinase kinases (MAP3Ks) remain largely ambiguous. Here, we review the existing knowledge of how individual members of the large and diverse group of MAP3Ks sense specific stress signals through largely non-redundant mechanisms. We emphasize the large knowledge gaps in assigning function and stress signals for individual MAP3K family members and touch on the potential of targeting this class of proteins for clinical benefit.


Subject(s)
JNK Mitogen-Activated Protein Kinases , MAP Kinase Kinase Kinases , Animals , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System , Signal Transduction , Phosphorylation , p38 Mitogen-Activated Protein Kinases/metabolism , Calcium-Calmodulin-Dependent Protein Kinases/metabolism , Mammals/metabolism
6.
Transl Psychiatry ; 13(1): 375, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38057311

ABSTRACT

Autism spectrum disorder (ASD) is a complex disorder of neurodevelopment, the function of long noncoding RNA (lncRNA) in ASD remains essentially unknown. In the present study, gene networks were used to explore the ASD disease mechanisms integrating multiple data types (for example, RNA expression, whole-exome sequencing signals, weighted gene co-expression network analysis, and protein-protein interaction) and datasets (five human postmortem datasets). A total of 388 lncRNAs and five co-expression modules were found to be altered in ASD. The downregulated co-expression M4 module was significantly correlated with ASD, enriched with autism susceptibility genes and synaptic signaling. Integrating lncRNAs from the M4 module and microRNA (miRNA) dysregulation data from the literature identified competing endogenous RNA (ceRNA) network. We identified the downregulated mRNAs that interact with miRNAs by the miRTarBase, miRDB, and TargetScan databases. Our analysis reveals that MIR600HG was downregulated in multiple brain tissue datasets and was closely associated with 9 autism-susceptible miRNAs in the ceRNA network. MIR600HG and target mRNAs (EPHA4, MOAP1, MAP3K9, STXBP1, PRKCE, and SCAMP5) were downregulated in the peripheral blood by quantitative reverse transcription polymerase chain reaction analysis (false discovery rate <0.05). Subsequently, we assessed the role of lncRNA dysregulation in altered mRNA levels. Experimental verification showed that some synapse-associated mRNAs were downregulated after the MIR600HG knockdown. BrainSpan project showed that the expression patterns of MIR600HG (primate-specific lncRNA) and synapse-associated mRNA were similar in different human brain regions and at different stages of development. A combination of support vector machine and random forest machine learning algorithms retrieved the marker gene for ASD in the ceRNA network, and the area under the curve of the diagnostic nomogram was 0.851. In conclusion, dysregulation of MIR600HG, a novel specific lncRNA associated with ASD, is responsible for the ASD-associated miRNA-mRNA axes, thereby potentially regulating synaptogenesis.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , MicroRNAs , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Autistic Disorder/genetics , Autism Spectrum Disorder/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Regulatory Networks , RNA, Messenger/genetics , RNA, Messenger/metabolism , Adaptor Proteins, Signal Transducing/genetics , Apoptosis Regulatory Proteins/genetics , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Membrane Proteins/genetics
7.
Physiol Genomics ; 55(12): 634-646, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37811720

ABSTRACT

Congenital heart disease (CHD) is one of the most prevalent neonatal congenital anomalies. To catalog the putative candidate CHD risk genes, we collected 16,349 variants [single-nucleotide variants (SNVs) and Indels] impacting 8,308 genes in 3,166 CHD cases for a comprehensive meta-analysis. Using American College of Medical Genetics (ACMG) guidelines, we excluded the 0.1% of benign/likely benign variants and the resulting dataset consisted of 83% predicted loss of function variants and 17% missense variants. Seventeen percent were de novo variants. A stepwise analysis identified 90 variant-enriched CHD genes, of which six (GPATCH1, NYNRIN, TCLD2, CEP95, MAP3K19, and TTC36) were novel candidate CHD genes. Single-cell transcriptome cluster reconstruction analysis on six CHD tissues and four controls revealed upregulation of the top 10 frequently mutated genes primarily in cardiomyocytes. NOTCH1 (highest number of variants) and MYH6 (highest number of recurrent variants) expression was elevated in endocardial cells and cardiomyocytes, respectively, and 60% of these gene variants were associated with tetralogy of Fallot and coarctation of the aorta, respectively. Pseudobulk analysis using the single-cell transcriptome revealed significant (P < 0.05) upregulation of both NOTCH1 (endocardial cells) and MYH6 (cardiomyocytes) in the control heart data. We observed nine different subpopulations of CHD heart cardiomyocytes of which only four were observed in the control heart. This is the first comprehensive meta-analysis combining genomics and CHD single-cell transcriptomics, identifying the most frequently mutated CHD genes, and demonstrating CHD gene heterogeneity, suggesting that multiple genes contribute to the phenotypic heterogeneity of CHD. Cardiomyocytes and endocardial cells are identified as major CHD-related cell types.NEW & NOTEWORTHY Congential heart disease (CHD) is one of the most prevalent neonatal congenital anomalies. We present a comprehensive analysis combining genomics and CHD single-cell transcriptome. Our study identifies 90 potential candidate CHD risk genes of which 6 are novel. The risk genes have heterogenous expression suggestive of multiple genes contributing to the phenotypic heterogeneity of CHD. Cardiomyocytes and endocardial cells are identified as major CHD-related cell types.


Subject(s)
Aortic Coarctation , Heart Defects, Congenital , Infant, Newborn , Humans , Myocytes, Cardiac , Endothelial Cells , Heart Defects, Congenital/genetics , Mutation/genetics , MAP Kinase Kinase Kinases/genetics
9.
Elife ; 122023 08 09.
Article in English | MEDLINE | ID: mdl-37555828

ABSTRACT

Tumor progression locus 2 (TPL2) (MAP3K8) is a central signaling node in the inflammatory response of peripheral immune cells. We find that TPL2 kinase activity modulates microglial cytokine release and is required for microglia-mediated neuron death in vitro. In acute in vivo neuroinflammation settings, TPL2 kinase activity regulates microglia activation states and brain cytokine levels. In a tauopathy model of chronic neurodegeneration, loss of TPL2 kinase activity reduces neuroinflammation and rescues synapse loss, brain volume loss, and behavioral deficits. Single-cell RNA sequencing analysis indicates that protection in the tauopathy model was associated with reductions in activated microglia subpopulations as well as infiltrating peripheral immune cells. Overall, using various models, we find that TPL2 kinase activity can promote multiple harmful consequences of microglial activation in the brain including cytokine release, iNOS (inducible nitric oxide synthase) induction, astrocyte activation, and immune cell infiltration. Consequently, inhibiting TPL2 kinase activity could represent a potential therapeutic strategy in neurodegenerative conditions.


Subject(s)
MAP Kinase Kinase Kinases , Tauopathies , Animals , Humans , Mice , Brain/pathology , Cells, Cultured , Dendritic Spines/pathology , Lipopolysaccharides , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Mice, Knockout , Microglia/metabolism , Neuroinflammatory Diseases/pathology , Sequence Analysis, RNA , Single-Cell Analysis , tau Proteins/genetics , tau Proteins/metabolism , Tauopathies/metabolism , Tauopathies/pathology , Tauopathies/physiopathology
10.
Int J Mol Sci ; 24(13)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37445830

ABSTRACT

Ovarian cancer is a gynecological tumor with an incidence rate lower than those of other gynecological tumor types and the second-highest death rate. CC chemokine 2 (CCL2) is a multifunctional factor associated with the progression of numerous cancers. However, the effect of CCL2 on ovarian cancer progression is unclear. Here, we found that exogenous CCL2 and the overexpression of CCL2 promoted the proliferation and metastasis of ovarian cancer cells. On the other hand, CCL2 knockdown via CRISPR/Cas9 inhibited ovarian cancer cell proliferation, migration, and invasion. The present study demonstrated that mitogen-activated protein three kinase 19 (MAP3K19) was the key CCL2 target for regulating ovarian cancer progression through transcriptome sequencing. Additionally, MAP3K19 knockout inhibited ovarian cancer cell proliferation, migration, and invasion. Furthermore, CCL2 increased MAP3K19 expression by activating the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) pathway. The present study showed the correlation between CCL2 and ovarian cancer, suggesting that CCL2 may be a novel target for ovarian cancer therapy.


Subject(s)
Genital Neoplasms, Female , Ovarian Neoplasms , Humans , Female , Extracellular Signal-Regulated MAP Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Mitogens/pharmacology , MAP Kinase Signaling System , Chemokine CCL2/metabolism , Signal Transduction , Ovarian Neoplasms/genetics , Ovarian Neoplasms/pathology , Chemokines/metabolism , Cell Line, Tumor , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism
11.
World J Microbiol Biotechnol ; 39(10): 255, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37474876

ABSTRACT

We previously isolated a mutant of Saccharomyces cerevisiae strain 85_9 whose glycerol assimilation was improved through adaptive laboratory evolution. To investigate the mechanism for this improved glycerol assimilation, genome resequencing of the 85_9 strain was performed, and the mutations in the open reading frame of HOG1, SIR3, SSB2, and KGD2 genes were found. Among these, a frameshift mutation in the HOG1 open reading frame was responsible for the improved glycerol assimilation ability of the 85_9 strain. Moreover, the HOG1 gene disruption improved glycerol assimilation. As HOG1 encodes a mitogen-activated protein kinase (MAPK), which is responsible for the signal transduction cascade in response to osmotic stress, namely the high osmolarity glycerol (HOG) pathway, we investigated the effect of the disruption of PBS2 gene encoding MAPK kinase for Hog1 MAPK on glycerol assimilation, revealing that PBS2 disruption can increase glycerol assimilation. These results indicate that loss of function of Hog1 improves glycerol assimilation in S. cerevisiae. However, single disruption of the SSK2, SSK22 and STE11 genes encoding protein kinases responsible for Pbs2 phosphorylation in the HOG pathway did not increase glycerol assimilation, while their triple disruption partially improved glycerol assimilation in S. cerevisiae. In addition, the HOG1 frameshift mutation did not improve glycerol assimilation in the STL1-overexpressing RIM15 disruptant strain, which was previously constructed with high glycerol assimilation ability. Furthermore, the effectiveness of the HOG1 disruptant as a bioproduction host was validated, indicating that the HOG1 CYB2 double disruptant can produce L-lactic acid from glycerol.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Glycerol/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Phosphorylation , Osmotic Pressure , Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism
12.
Biochim Biophys Acta Mol Basis Dis ; 1869(8): 166813, 2023 12.
Article in English | MEDLINE | ID: mdl-37488049

ABSTRACT

Ubiquitin-specific protease 22 (USP22) is a member of the ubiquitin specific protease family (ubiquitin-specific protease, USPs), the largest subfamily of deubiquitinating enzymes, and plays an important role in the treatment of tumors. USP22 is also expressed in the heart. However, the role of USP22 in heart disease remains unclear. In this study, we found that USP22 was elevated in hypertrophic mouse hearts and in angiotensin II (Ang II)-induced cardiomyocytes. The inhibition of USP22 expression with adenovirus significantly rescued hypertrophic phenotype and cardiac dysfunction induced by pressure overloaded. Consistent with in vivo study, silencing by USP22 shRNA expression in vitro had similar results. Molecular analysis revealed that transforming growth factor-ß-activating protein 1 (TAK1)-(JNK1/2)/P38 signaling pathway and HIF-1α was activated in the Ang II-induced hypertrophic cardiomyocytes, whereas HIF-1α expression was decreased after the inhibition of USP22. Inhibition of HIF-1α expression reduces TAK1 expression. Co-immunoprecipitation and ubiquitination studies revealed the regulatory mechanism between USP22 and HIF1α.Under hypertrophic stress conditions, USP22 enhances the stability of HIF-1α through its deubiquitination activity, which further activates the TAK1-(JNK1/2)/P38 signaling pathway to lead to cardiac hypertrophy. Inhibition of HIF-1α expression further potentiates the in vivo pathological effects caused by USP22 deficiency. In summary, this study suggests that USP22, through HIF-1α-TAK1-(JNK1/2)/P38 signaling pathway, may be potential targets for inhibiting pathological cardiac hypertrophy induced by pressure overload.


Subject(s)
Cardiomegaly , MAP Kinase Kinase Kinases , Animals , Mice , Cardiomegaly/metabolism , MAP Kinase Kinase Kinases/genetics , Myocytes, Cardiac/metabolism , Signal Transduction , Ubiquitin-Specific Proteases/metabolism , Ubiquitin-Specific Proteases/pharmacology
13.
Front Immunol ; 14: 1167667, 2023.
Article in English | MEDLINE | ID: mdl-37304282

ABSTRACT

Background and aims: In the course of clinical practice, hepatic ischemia/reperfusion (I/R) injury is a prevalent pathophysiological event and is caused by a combination of complex factors that involve multiple signaling pathways such as MAPK and NF-κB. USP29 is a deubiquitinating enzyme important during the development of tumors, neurological diseases, and viral immunity. However, it is unknown how USP29 contributes to hepatic I/R injury. Methods and results: We systematically investigated the role of the USP29/TAK1-JNK/p38 signaling pathway in hepatic I/R injury. We first found reduced USP29 expression in both mouse hepatic I/R injury and the primary hepatocyte hypoxia-reoxygenation (H/R) models. We established USP29 full knockout mice (USP29-KO) and hepatocyte-specific USP29 transgenic mice (USP29-HTG), and we found that USP29 knockout significantly exacerbates the inflammatory infiltration and injury processes during hepatic I/R injury, whereas USP29 overexpression alleviates liver injury by decreasing the inflammatory response and inhibiting apoptosis. Mechanistically, RNA sequencing results showed the effects of USP29 on the MAPK pathway, and further studies revealed that USP29 interacts with TAK1 and inhibits its k63-linked polyubiquitination, thereby preventing the activation of TAK1 and its downstream signaling pathways. Consistently, 5z-7-Oxozeaneol, an inhibitor of TAK1, blocked the detrimental effects of USP29 knockout on H/R-induced hepatocyte injury, further confirming that USP29 plays a regulatory role in hepatic I/R injury by targeting TAK1. Conclusion: Our findings imply that USP29 is a therapeutic target with promise for the management of hepatic I/R injury via TAK1-JNK/p38 pathway-dependent processes.


Subject(s)
MAP Kinase Kinase Kinases , Reperfusion Injury , Animals , Mice , Liver , MAP Kinase Kinase Kinases/genetics , Mice, Knockout , Mice, Transgenic , Reperfusion Injury/genetics , Ubiquitin-Specific Proteases/genetics
14.
Fish Shellfish Immunol ; 138: 108857, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37257570

ABSTRACT

Transforming growth factor-ß activated kinase 1 (TAK1) is an adaptor molecular in the TLR-mediated NF-κB pathway which has been implicated in the regulation of a wide range of physiological and pathological processes. Proteasome 26S subunit, non-ATPase (PSMD) 13 is essential for the structural maintenance and function of the 26S proteasome. However, the mechanism of PSMD13 in innate immune regulation is not clear. In this study, the expression of PSMD13 mRNA was significantly increased under Vibrio harveyi stimulation, and PSMD13 inhibited the NF-κB pathway by targeting TAK1. Mechanically, PSMD13 significantly inhibited the K63-linked ubiquitination of TAK1, thereby inhibiting the expression of TAK1. Moreover, this discovery enriches the research of the PSMD family in regulating the innate immune response and provides a new idea for the study of the mammalian innate immune regulation mechanism.


Subject(s)
NF-kappa B , Perciformes , Animals , NF-kappa B/genetics , NF-kappa B/metabolism , MAP Kinase Kinase Kinases/genetics , Immunity, Innate/genetics , Protein Binding , Ubiquitination , Mammals/metabolism
15.
PLoS One ; 18(5): e0286390, 2023.
Article in English | MEDLINE | ID: mdl-37228128

ABSTRACT

Changes in the organization and structure of the fibronectin matrix are believed to contribute to dysregulated wound healing and subsequent tissue inflammation and tissue fibrosis. These changes include an increase in the EDA isoform of fibronectin as well as the mechanical unfolding of fibronectin type III domains. In previous studies using embryonic foreskin fibroblasts, we have shown that fibronectin's EDA domain (FnEDA) and the partially unfolded first Type III domain (FnIII-1c) function as Damage Associated Molecular Pattern (DAMP) molecules to stimulate the induction of inflammatory cytokines by serving as agonists for Toll-Like Receptor-4 (TLR4). However, the role of signaling molecules downstream of TLR-4 such as TGF-ß Activated Kinase 1 (TAK1) and Mitogen activated protein kinases (MAPK) in regulating the expression of fibronectin DAMP induced inflammatory genes in specific cell types is not known. In the current study, we evaluate the molecular steps regulating the fibronectin driven induction of inflammatory genes in three human fibroblast cell lines: embryonic foreskin, adult dermal, and adult kidney. The fibronectin derived DAMPs each induce the phosphorylation and activation of TAK1 which results in the activation of two downstream signaling arms, IKK/NF-κB and MAPK. Using the specific inhibitor 5Z-(7)-Oxozeanol as well as siRNA, we show TAK1 to be a crucial signaling mediator in the release of cytokines in response to fibronectin DAMPs in all three cell types. Finally, we show that FnEDA and FnIII-1c induce several pro-inflammatory cytokines whose expression is dependent on both TAK1 and JNK MAPK and highlight cell-type specific differences in the gene-expression profiles of the fibroblast cell-lines.


Subject(s)
Fibronectins , Mitogen-Activated Protein Kinases , Humans , Cell Line , Cytokines/metabolism , Fibroblasts/metabolism , Fibronectins/metabolism , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Alarmins/metabolism
16.
Sci Rep ; 13(1): 6681, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37095160

ABSTRACT

Peri-hilar cholangiocarcinoma (pCCA) is chemorefractory and limited genomic analyses have been undertaken in Western idiopathic disease. We undertook comprehensive genomic analyses of a U.K. idiopathic pCCA cohort to characterize its mutational profile and identify new targets. Whole exome and targeted DNA sequencing was performed on forty-two resected pCCA tumors and normal bile ducts, with Gene Set Enrichment Analysis (GSEA) using one-tailed testing to generate false discovery rates (FDR). 60% of patients harbored one cancer-associated mutation, with two mutations in 20%. High frequency somatic mutations in genes not typically associated with cholangiocarcinoma included mTOR, ABL1 and NOTCH1. We identified non-synonymous mutation (p.Glu38del) in MAP3K9 in ten tumors, associated with increased peri-vascular invasion (Fisher's exact, p < 0.018). Mutation-enriched pathways were primarily immunological, including innate Dectin-2 (FDR 0.001) and adaptive T-cell receptor pathways including PD-1 (FDR 0.007), CD4 phosphorylation (FDR 0.009) and ZAP70 translocation (FDR 0.009), with overlapping HLA genes. We observed cancer-associated mutations in over half of our patients. Many of these mutations are not typically associated with cholangiocarcinoma yet may increase eligibility for contemporary targeted trials. We also identified a targetable MAP3K9 mutation, in addition to oncogenic and immunological pathways hitherto not described in any cholangiocarcinoma subtype.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Klatskin Tumor , Humans , Klatskin Tumor/pathology , Bile Ducts, Intrahepatic/pathology , Bile Duct Neoplasms/pathology , Mutation , Cholangiocarcinoma/pathology , Genomics , DNA Mutational Analysis , MAP Kinase Kinase Kinases/genetics
17.
Gene Expr Patterns ; 48: 119318, 2023 06.
Article in English | MEDLINE | ID: mdl-37011704

ABSTRACT

Development of the vertebrate embryo requires strict coordination of a highly complex series of signaling cascades, that drive cell proliferation, differentiation, migration, and the general morphogenetic program. Members of the Map kinase signaling pathway are repeatedly required throughout development to activate the downstream effectors, ERK, p38, and JNK. Regulation of these pathways occurs at many levels in the signaling cascade, with the Map3Ks playing an essential role in target selection. The thousand and one amino acid kinases (Taoks) are Map3Ks that have been shown to activate both p38 and JNK and are linked to neurodevelopment in both invertebrate and vertebrate organisms. In vertebrates, there are three Taok paralogs (Taok1, Taok2, and Taok3) which have not yet been ascribed a role in early development. Here we describe the spatiotemporal expression of Taok1, Taok2, and Taok3 in the model organism Xenopus laevis. The X. laevis Tao kinases share roughly 80% identity to each other, with the bulk of the conservation in the kinase domain. Taok1 and Taok3 are highly expressed in pre-gastrula and gastrula stage embryos, with initial expression localized to the animal pole and later expression in the ectoderm and mesoderm. All three Taoks are expressed in the neural and tailbud stages, with overlapping expression in the neural tube, notochord, and many anterior structures (including branchial arches, brain, otic vesicles, and eye). The expression patterns described here provide evidence that the Tao kinases may play a central role in early development, in addition to their function during neural development, and establish a framework to better understand the developmental roles of Tao kinase signaling.


Subject(s)
Embryonic Development , MAP Kinase Kinase Kinases , Xenopus Proteins , Xenopus laevis , Animals , Embryonic Development/genetics , Gastrula , Gene Expression Profiling , Gene Expression Regulation, Developmental , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Xenopus laevis/embryology , Xenopus Proteins/genetics , Xenopus Proteins/metabolism
18.
JCI Insight ; 8(10)2023 05 22.
Article in English | MEDLINE | ID: mdl-37071470

ABSTRACT

Muscular dystrophies make up a group of genetic neuromuscular disorders that involve severe muscle wasting. TGF-ß-activated kinase 1 (TAK1) is an important signaling protein that regulates cell survival, growth, and inflammation. TAK1 has been recently found to promote myofiber growth in the skeletal muscle of adult mice. However, the role of TAK1 in muscle diseases remains poorly understood. In the present study, we have investigated how TAK1 affects the progression of dystrophic phenotype in the mdx mouse model of Duchenne muscular dystrophy (DMD). TAK1 is highly activated in the dystrophic muscle of mdx mice during the peak necrotic phase. While targeted inducible inactivation of TAK1 inhibits myofiber injury in young mdx mice, it results in reduced muscle mass and contractile function. TAK1 inactivation also causes loss of muscle mass in adult mdx mice. By contrast, forced activation of TAK1 through overexpression of TAK1 and TAB1 induces myofiber growth without having any deleterious effect on muscle histopathology. Collectively, our results suggest that TAK1 is a positive regulator of skeletal muscle mass and that targeted regulation of TAK1 can suppress myonecrosis and ameliorate disease progression in DMD.


Subject(s)
Muscle, Skeletal , Muscular Dystrophy, Duchenne , Mice , Animals , Mice, Inbred mdx , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/pathology , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism
19.
Gen Comp Endocrinol ; 337: 114260, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36933747

ABSTRACT

mHypoA-55 cells are kisspeptin-expressing neuronal cells originating from the arcuate nucleus of the mouse hypothalamus. These cells are called KNDy neurons because they co-express kisspeptin, neurokinin B, and dynorphin A. In addition, they express gonadotropin-releasing hormone (GnRH). Here, we found that kisspeptin 10 (KP10) increased Kiss-1 (encoding kisspeptin) and GnRH gene expression in kisspeptin receptor (Kiss-1R)-overexpressing mHypoA-55 cells. KP10 greatly increased serum response element (SRE) promoter activity, which is a target of extracellular signal-regulated kinase (ERK) (20.0 ± 2.54-fold). KP10 also increased cAMP-response element (CRE) promoter activity in these cells (2.32 ± 0.36-fold). KP10-increased SRE promoter activity was significantly prevented in the presence of PD098095, a MEK kinase (MEKK) inhibitor, and KP10-induced CRE promoter activity was also inhibited by PD098059. Similarly, H89, a protein kinase A (PKA) inhibitor, significantly inhibited the KP10 induction of SRE and CRE promoters. KP10-induced Kiss-1 and GnRH gene expressions were inhibited in the presence of PD098059. Likewise, H89 significantly inhibited the KP10-induced increase in Kiss-1 and GnRH. Transfection of mHypoA-55 cells with constitutively active MEKK (pFC-MEKK) increased SRE and CRE promoter activities by 9.75 ± 1.77- and 1.36 ± 0.12-fold, respectively. Induction of constitutively active PKA (pFC-PKA) also increased SRE and CRE promoter activities by 2.41 ± 0.42- and 40.71 ± 7.77-fold, respectively. Furthermore, pFC-MEKK and -PKA transfection of mHypoA-55 cells increased both Kiss-1 and GnRH gene expression. Our current observations suggest that KP10 increases both the ERK and PKA pathways and that both pathways mutually interact in mHypoA-55 hypothalamic cells. Activation of both ERK and PKA signaling might be necessary to induce Kiss-1 and GnRH gene expressions.


Subject(s)
Gonadotropin-Releasing Hormone , Kisspeptins , Animals , Mice , Cell Line , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression , Gonadotropin-Releasing Hormone/genetics , Gonadotropin-Releasing Hormone/pharmacology , Gonadotropin-Releasing Hormone/metabolism , Hypothalamus/metabolism , Kisspeptins/genetics , Kisspeptins/metabolism , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Signal Transduction
20.
J Biol Chem ; 299(4): 104569, 2023 04.
Article in English | MEDLINE | ID: mdl-36870684

ABSTRACT

To cope with an increased external osmolarity, the budding yeast Saccharomyces cerevisiae activates the Hog1 mitogen-activated protein kinase (MAPK) through the high-osmolarity glycerol (HOG) pathway, which governs adaptive responses to osmostress. In the HOG pathway, two apparently redundant upstream branches, termed SLN1 and SHO1, activate cognate MAP3Ks (MAPKK kinase) Ssk2/22 and Ste11, respectively. These MAP3Ks, when activated, phosphorylate and thus activate the Pbs2 MAP2K (MAPK kinase), which in turn phosphorylates and activates Hog1. Previous studies have shown that protein tyrosine phosphatases and the serine/threonine protein phosphatases type 2C negatively regulate the HOG pathway to prevent its excessive and inappropriate activation, which is detrimental to cell growth. The tyrosine phosphatases Ptp2 and Ptp3 dephosphorylate Hog1 at Tyr-176, whereas the protein phosphatase type 2Cs Ptc1 and Ptc2 dephosphorylate Hog1 at Thr-174. In contrast, the identities of phosphatases that dephosphorylate Pbs2 remained less clear. Here, we examined the phosphorylation status of Pbs2 at the activating phosphorylation sites Ser-514 and Thr-518 (S514 and T518) in various mutants, both in the unstimulated and osmostressed conditions. Thus, we found that Ptc1-Ptc4 collectively regulate Pbs2 negatively, but each Ptc acts differently to the two phosphorylation sites in Pbs2. T518 is predominantly dephosphorylated by Ptc1, while S514 can be dephosphorylated by any of Ptc1-4 to an appreciable extent. We also show that Pbs2 dephosphorylation by Ptc1 requires the adaptor protein Nbp2 that recruits Ptc1 to Pbs2, thus highlighting the complex processes involved in regulating adaptive responses to osmostress.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Glycerol/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , MAP Kinase Kinase Kinases/genetics , MAP Kinase Kinase Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Osmolar Concentration , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Phosphorylation , Protein Kinases/metabolism , Protein Phosphatase 2C/metabolism , Protein Tyrosine Phosphatases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...